STUDIES ON A NEW IMMUNOACTIVE PEPTIDE, FK-156 I. TAXONOMY OF THE PRODUCING STRAINS

Toshio Gotoh, Kunio Nakahara, Morita Iwami, Hatsuo Aoki and Hiroshi Imanaka

Fermentation Research Laboratory, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan

(Received for publication March 31, 1982)

Two strains of actinomycetes produce a new biologically active substance, designated FK-156. Examination of the morphological, cultural and physiological characteristics of the producing strains, No. C-353 and No. 6724, identified them as *Streptomyces olivaceogriseus* sp. nov. and *Streptomyces violaceus*, respectively.

In the course of a screening for new biologically active substances, FK-156 was discovered in the culture broth of strains No. C-353 and 6724. These cultures were isolated from soil samples obtained in Kochi Prefecture, and Ishigaki Island, Okinawa Prefecture, respectively. This report contains descriptions of these microorganisms and a discussion of their taxonomic position.

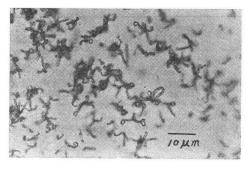
Materials and Methods

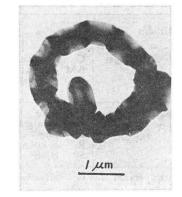
The methods described by SHIRLING and GOTTLIEB¹⁾ were employed principally for these taxonomic studies. Morphological observations were made on cultures with light and electron microscopes. The cultures were grown at 30°C for 14 days on yeast extract - malt extract agar, inorganic salts - starch agar or oatmeal agar.

Cultural characteristics were observed on ten kinds of media as described by SHIRLING and GOTTLIEB¹⁾ and WAKSMAN²⁾. The incubation was made at 30°C for 14 days. The color names used in this study were based on Color Standard (Nihon Shikisai Co., Ltd.). The analysis of whole cell hydrolysates was performed by the methods of BECKER *et al.*³⁾ and YAMAGUCHI⁴⁾.

The range of growth temperature and optimum temperature were determined on Bennett agar using a temperature gradient incubator (Toyo Kagaku Sangyo Co., Ltd.). Gelatin liquefaction was examined at 30°C for 14 days on a gelatin medium. Starch hydrolysis was observed by the starchiodine reaction on an inorganic salts - starch agar plate incubated at 30°C for 14 days. Milk peptonization and coagulation were observed in skim-milk medium at 30°C for 14 days. Melanoid pigment production was observed on tyrosine agar, Tryptone - yeast extract broth and peptone - yeast extract iron agar. Nitrate reduction was examined on a medium composed of nutrient broth 10 g, KNO₃ 10 g, agar 20 g and distilled water 1,000 ml. Formation of nitrite was detected with reagents consisted of 0.8% sulfanilic acid in 5 N acetic acid and 0.5 % α -naphtylamine in the same solvent. H₂S production was examined in a medium composed of nutrient broth 0.3%, glucose 1%, FeSO₄·7H₂O 0.02%, NaCl 0.5%, Na₂S₂O₈ 0.03%, phenol red 30 μ g/ml and agar 2%.

Utilization of carbon sources was examined by the method of PRIDHAM and GOTTLIEB⁵⁾. The results were determined after 14 days incubation at 30°C.


Results and Discussion


Strain C-353

The chain of mature spores consisted of 5 to 20 spores and formed hooks, loops and occasionally

Plate 1. Aerial mycelium of strain No. C-353.

Plate 2. Spores of strain No. C-353.

closed spirals (Retinaculiaperti) (Plate 1). The spores are short cylindrical, phalangiform and $0.5 \sim 0.7 \times 1.1 \sim 1.3 \ \mu\text{m}$. Spore surfaces are smooth (Plate 2).

Aerial mycelium was in the gray or green color series on oatmeal agar, yeast extract - malt extract agar and inorganic salts - starch agar. Soluble pigment was not produced. Culture characteristics are shown in Table 1.

Whole cell hydrolysates of strain No. C-353 showed that it contained LL-diaminopimelic acid. Accordingly the cell wall of this strain belongs to type I.

Temperature range for growth was from 15 to 40°C and optimum temperature was 28°C. Starch hydrolysis was weakly positive. Gelatin liquefaction, milk peptonization and milk coagulation were negative. Melanin production was positive on tyrosine - yeast extract agar, peptone - yeast extract - iron agar and Tryptone - yeast extract broth.

Most carbon sources examined were utilized except L-arabinose, D-xylose, L-rhamnose, salicin, cellulose, chitin, sodium citrate, raffinose and sodium acetate. These results are shown in Table 3.

After comparing the characteristics of the *Streptomyces* species described in "The Actinomycetes. Vol. II" by WAKSMAN²), ISP reports by SHIRLING and GOTTLIEB^{6,7,8}), and other recent literature, *Streptomyces eurythermus* and *Streptomyces galbus* were selected for further detailed comparisons. These two species were differentiated from strain No. C-353 in the following points.

Streptomyces eurythermus IFO-12764

S. eurythermus can assimilate D-xylose, rhamnose, L-arabinose, raffinose, salicin and sodium citrate but not inositol. S. eurythermus produces soluble pigment in almost all media tested. Gelatin liquefaction, milk peptonization, urease reaction are positive. S. eurythermus can grow in the presence of 7% NaCl but not in the presence of 10%.

Streptomyces galbus IFO-12864

S. galbus can assimilate D-xylose, raffinose and L-arabinose. Assimilation of rhamnose, sodium citrate and sodium acetate are doubtful. In almost all media examined, S. galbus produces soluble pigment. Aerial mass color of S. galbus is different on yeast - malt extract agar, oatmeal agar, inorganic salts - starch agar and some of the others. Gelatin liquefaction and milk peptonization are positive. S. galbus can grow in the presence of 5% NaCl but not in 7%. Optimum temperature is $37^{\circ}C$.

As the results of the above comparisons, it was concluded that strain No. C-353 can be considered a new species and the strain has been designated as *Streptomyces olivaceogriseus* sp. nov. (o.li.va'ce.o.

Medium		C-353	S. eurythermus IFO-12764	S. galbus IFO-12864
Yeast - malt extract agar	G AM R SP	abundant greenish gray yellowish brown none	abundant grayish green dark orange dark orange	abundant yellowish white pale yellowish brown dull reddish orange
Oatmeal agar	G AM R SP	poor light gray to greenish gray colorless none	poor pale reddish brown colorless pale orange, trace	poor pale reddish brown colorless pale yellow
Inorganic salts - starch agar	G AM R SP	abundant olive gray grayish yellow brown none	abundant grayish yellow brown grayish white none	abundant grayish yellow brown light gray pale yellow
Glucose - asparagine agar	G AM R	abundant light gray to greenish gray pale yellow to yellowish	abundant grayish yellow brown light gray	abundant grayish yellow brown pale yellowish brown
	SP	brown none	dark orange	pale yellowish brown
Glycerin - asparagine agar	G AM R SP	moderate light gray pale yellowish brown none	abundant olive gray to brown brown chestnut brown	abundant grayish yellow brown pale yellowish brown yellow
Nutrient agar	G AM R SP	poor none pale yellow none	moderate grayish white pale yellow none	moderate grayish white light reddish yellow yellow
Potato-dextrose agar	G AM R SP	moderate olive drab grayish black none	moderate grayish yellow brown chestnut brown chestnut brown	moderate none yellow yellow
Sucrose-nitrate agar	G AM	moderate none	abundant grayish yellow brown to white	poor light gray
	R SP	pale yellow none	chestnut brown chestnut brown	yellow yellow
Tyrosine agar	G AM R SP	poor light olive gray yellowish brown light brown	moderate light gray dark gray dark brown	moderate light gray yellow dark brown, trace
Peptone - yeast extract - iron agar	G AM R SP	moderate none colorless to pale yellow light brown	moderate none colorless dark brown	moderate none pale yellow dark brown

Table 1. Cultural characteristics of strain No. C-353, *Streptomyces eurythermus* IFO-12764 and *Streptomyces galbus* IFO-12864.

Abbreviation: G=growth, AM=aerial mass color, R=reverse side color, SP=soluble pigment

gri'se.us; M.L. *adj. olivaceus* olive colored; M.L. *adj. griseus* gray: M.L. *adj. olivaceo-griseus* olive-gray colored), referring to the olive-gray colored aerial mycelium on yeast - malt extract agar, oatmeal agar and inorganic salts - starch agar.

Type Strain: Strain No. C-353. A culture of this strain has been deposited at the American Type Culture Collection, Rockville, Md., under the accession number of ATCC 31427.

The description of species and of the type strain are the same as that given above.

THE JOURNAL OF ANTIBIOTICS

Strain No. 6724

Mature spore chains consisted of 10 to 50 spores and formed spirals (Plate 3). The spores are cylindrical and $0.3 \sim 0.5 \times 0.8 \sim 1.0 \ \mu\text{m}$. Spore surfaces are spiny (Plate 4).

Cultural characteristics of strain No. 6724 are shown in Table 4. Aerial mycelium was in the red color series on oatmeal agar, yeast extract - malt extract agar and inorganic salts - starch agar. A pink to red soluble pigment was produced. The reverse side pigment and soluble pigment are pH indicators. Whole cell hydrolysates of strain No. 6724 contained LL-diaminopimelic acid. Accordingly, the cell wall of this strain is type I.

Physiological properties of this strain are summarized in Table 5. Temperature range for growth is from 15 to 40°C and optimum temperature is 28°C. Starch hydrolysis and milk coagulation are positive. Gelatin liquefaction and milk peptonization are negative. Melanin production is positive on peptone - yeast extract - iron agar and in Tryptone - yeast extract broth and on tyrosine agar.

Table 2.	Physiological properties of	f strain No.	C-353,	Streptomyces	eurythermus	IFO-12764 and	Strepto-
myce	es galbus IFO-12864.						

	C-353	S. eurythermus IFO-12764	S. galbus IFO-12864
Temperature range for growth	14∼40°C	15~48°C	15∼44°C
Optimum temperature	28°C	37°C	37°C
Starch hydrolysis	weakly positive	positive	weakly positive
Gelatin liquefaction	negative	weakly positive	weakly positive
Milk peptonization	negative	positive	positive
Milk coagulation	negative	negative	negative
Melanin production	positive	positive	positive
H_2S production	positive	positive	positive
Urease reaction	negative	positive	negative
Nitrate reduction	negative	negative	negative
NaCl tolerance (%)	<5%	>7%, <10%	>5%, <7%

Table 3. Carbon sources utilization of strain No. C-353, Streptomyces eurythermus IFO-12764 and Streptomyces galbus IFO-12864.

	C-353	S. eurythermus IFO-12764	S. galbus IFO-12864		C-353	S. eurythermus IFO-12764	S. galbus IFO-12864
D-Glucose	+	+	+	D-Mannose	+	+	+
Sucrose	+	+	+	D-Trehalose	+	-+-	+
Glycerol	+	+	+	Inositol	+		+
D-Xylose	±	+	+	Mannitol	+	+	+
D -Fructose	+	+	+	Inulin	+	+	+
Lactose	+	+	+	Cellulose	—	—	-
Maltose	+	+	+	Salicin	-	+	-
Rhamnose	-	+	±	Chitin	-		_
Raffinose	_	+	+	Sodium citrate	-	+	土
D-Galactose	+	+	+	Sodium succinate	+	+	+
L-Arabinose	-	+	+	Sodium acetate	-	\pm	\pm

Symbols: +=utilization, $\pm=$ doubtful utilization, -=no utilization

THE JOURNAL OF ANTIBIOTICS

Medium	Aerial mass color	Reverse side of colony	Soluble pigment
Sucrose - nitrate agar	purplish white, powdery	colorless, small colonies	purple
Glucose - asparagine agar	purplish white, powdery	yellowish red, small colonies	pink
Glycerin - asparagine agar	pinkish white to pink, powdery	yellowish red, small colonies, slightly wrinkled	pink to red
Inorganic salts - starch agar	whitish red, short cottony	yellowish red, slightly wrinkled	red
Tyrosine agar	none	red, wrinkled colonies	none
Nutrient agar	none or very thin, powdery	colorless to purple, flat	reddish purple
Yeast - malt extract agar	pink to purplish pink, short cottony	reddish brown to purplish brown, wrinkled colonies	reddish purple
Oatmeal agar	pink to purplish pink, powdery	colorless to purplish pink, small colonies	pink to purple
Peptone - yeast extract-iron agar	none	colorless, wrinkled colonies	brown

Table 4. Cultural characteristics of strain No. 6724.

Plate 3. Aerial mycelium of strain No. 6724.

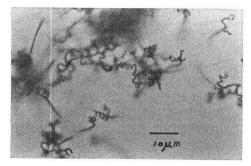


Table 6. Carbon source utilization of strain No. 6724.

L-Arabinose	+	Inulin	\pm
D-Xylose	+	Cellulose	
L-Rhamnose	+	Chitin	_
D-Glucose	+	Glycerol	+
D -Fructose	+	D-Mannitol	+
D-Mannose	+	Salicin	+
D-Galactose	+	Inositol	+
Sucrose	+	Sodium acetate	
Lactose	. +	Sodiun citrate	+
Maltose	+	Sodium succinate	+
Raffinose	+		

Symbols: +=utilization, $\pm=$ doubtful utilization, -=no utilization

Plate 4. Spores of strain No. 6724.

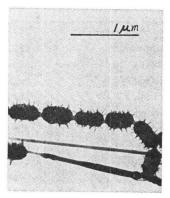


Table 5. Physiological properties of strain No. 6724.

Temperature range for growth	15~40°C
Optimum temperature	28°C
Starch hydrolysis	positive
Gelatin liquefaction	negative
Milk peptonization	negative
Milk coagulation	positive
Melanin production	positive

Cell wall type: Type I (LL-diaminopimelic acid)

The results of carbon source utilization tests are shown in Table 6. All carbon sources tested were utilized except inulin, cellulose, chitin and sodium acetate.

After comparison of the characteristics of the *Streptomyces* species described in "The Actinomycetes. Vol. 2" by WAKSMAN²), ISP reports by SHIRLING and GOTTLIEB^{6,7,8} and other recent literature, Streptomyces violaceus was recognized to be quite similar to strain No. 6724. Thus taxonomic comparison was carried out using the standard culture of *S. violaceus* IFO-13103. No significant difference was observed between the two cultures and the properties of strain No. 6724 showed good agreement

with those of *S. violaceus* IFO-13103. Strain No. 6724 has, therefore, been identified as *Streptomyces violaceus* No. 6724.

Strain No. 6724 has been deposited in the American Type Culture Collection under the accession number of ATCC 31481.

References

- SHIRLING, E. B. & D. GOTTLIEB: Method for characterization of *Streptomyces* species. Intern. J. Syst. Bacteriol. 16: 313~340, 1966
- WAKSMAN, S. A.: The Actinomycetes. Vol. II. Classification, identification and description of genera and species. The Williams and Wilkins, Baltimore, 1961
- BECKER, B.; M. P. LECHEVALIER, R. E. GORDON & H. A. LECHVALIER: Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl. Microbiol. 12: 421~423, 1964
- YAMAGUCHI, T.: Comparison of the cell-wall composition of morphologically distinct actinomycetes. J. Bacteriol. 89: 444~453, 1965
- 5) PRIDHAM, T. G. & D. GOTTLIEB: The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J. Bacteriol. 56: 107~114, 1948
- SHIRLING, E. B. & D. GOTTLIEB: Cooperative description of type cultures of *Streptomyces*. II. Species description from first study. Intern. J. Syst. Bacteriol. 18: 69~189, 1968
- SHIRLING, E. B. & D. GOTTLIEB: Cooperative description of type cultures of *Streptomyces*. III. Additional species descriptions from first and second studies. Intern. J. Syst. Bacteriol. 18: 279~392, 1968
- 8) SHIRLING, E. B. & D. GOTTLIEB: Cooperative description of type cultures of *Streptomyces*. VI. Species descriptions from the second, third and fourth studies. Inter. J. Syst. Bacteriol. 19: 391 ~ 512, 1969